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The chemical industry aims at producing new chemical enti-
ties (materials, fuels, pharmaceuticals, agrochemicals, etc.) with 
well-controlled properties. This is achieved by iterating through 
a Design-Make-Test-Analyze (DMTA) cycle[1] where multidisci-
plinary teams Design, Make, Test new compounds. The Analysis of 
the results generates insight that influences the Design step of the 
subsequent cycles. The DMTA cycle is the central unit of an opti-
mization process that continues until one or more stopping criteria 
are met (i.e. performance, safety, cost, etc.). 

Enhancements in the DMTA optimization process help the 
industry keep a competitive edge. Accelerating DMTA iterations 
and reducing their number would decrease the time-to-market for 
successful projects. Furthermore, a higher information intensity of 
the DMTA cycles would lower the number of experiments (mol-
ecules synthesized and experimental tests) required to validate or 
disprove a hypothesis and, overall, to achieve the target objectives. 
Companies achieved significant progress by looking at both the 
single steps of DMTA and the connection points. Nevertheless, sci-
entists and process engineers still strive to achieve higher effective-
ness and efficiency standards to meet our industries’ challenges. 

According to Chemistry 4.0 manifestos,[2] the digital transfor-
mation will profoundly impact the DMTA cycle. Digitalization will 
contribute innovative solutions to long-standing problems and will 
provide business opportunities for sustainable growth. The digital 
transformation is already impacting the Design stage, the medici-
nal chemists’ historical stronghold. Many chemical companies are 
responding to the increased pressure to innovate with a holistic ap-
proach to Design. For example, in Crop Protection, sustainability 
criteria are considered alongside product performance at very early 
project stages. However, the usual process to Design struggles to 
embed the steers from multidisciplinary teams effectively. In partic-
ular, there is a ‘leak’ in the pipeline between Analysis and Design, 
and the high data volume generated at each DMTA cycle does not 
fuel Design as it could and should. 

If the chemical space[3] were much smaller than it is, Design 
and Analysis would be unnecessary: a systematic approach could 
be used to screen each synthesizable compound and assess its per-
formance against a set of properties. However, the chemical space 
is immense[4] and surprisingly scarce of ‘optimal’ compounds that 
possesses the complex holistic profiles we seek.

In the Analysis stage, the scientist builds or refines a series of 
inference models linking molecular properties and molecular struc-
tures. In the Design phase, the scientist uses the inferring models to 

decide the compound set to inject into the next DMTA cycle. The 
relationship between Analysis and Design is key to improve the 
overall DMTA cycle: loss of information leads to poor Design and, 
thus, waste and missed opportunities.

Borrowing from Kahneman’s metaphor,[5] we could concep-
tualize the art and craft of Design as two separate ‘agents’ acting 
in the designer’s head. A ‘Generative agent’ assembles molecular 
structures based on chemical patterns acquired by experience. A 
‘Selection agent’ filters the ideas based on the qualitative inferring 
models generated by analyzing data. As an outcome of the interplay 
between Generative and Selection agents, a set of chemical struc-
tures is passed on to Synthesis because they meet qualitative criteria 
or serve to validate or disprove a hypothesis. 

Early digital approaches to Design mitigate the brain’s limi-
tations and the mind’s biases to increase the success rate of the 
DMTA cycle. In the Analysis phase, the data scientist uses soft-
ware and statistics to build quantitative models linking properties to 
molecular structure (Quantitative Structure-Property Relationship) 
and validate specific molecular models (pharmacophore, docking). 
The medicinal chemist extends his reach by generating a much 
larger set of compounds (based on hypotheses, molecular models, 
or cheminformatics software). He selects the most promising ones 
using quantitative models running on a computer instead of the 
qualitative ones hosted in his head. The quantitative models are usu-
ally arranged in a virtual screening cascade, a multi-stage funnel, 
analogous to the physical screening cascade. In this Direct Design 
approach, the stages of Generation and Selection are distinct and 
take place consecutively in a brain or a computer.

The virtual screening enhancement to Direct Design has suc-
cessfully increased the projects’ overall success but it did not fully 
meet expectations. Improved model quality and higher computa-
tional bandwidth have positively impacted virtual screening ap-
proaches and constituted vital strategies to support Direct Design 
better. However, virtual screening suffers from intrinsic limita-
tions that demand a completely different approach to Design.[5] 
In particular, the tiering of multiple models from coarse/cheap to 
accurate/expensive introduces an overall error in the virtual screen-

Fig. 1. Direct and Inverse Design approaches in the DMTA cycle.
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ing cascade that might become unbearable. This is especially true 
when screening extremely large sets of compounds, where rough 
preliminary filtering mitigates the computational demand at the 
cost of overall accuracy. In general, virtual screening does not suit 
well the exploration of the (immense) chemical space. Models de-
rived at the Analysis stage directly impact the Selection portion of 
Direct Design. At the same time, scientists mediate the influence 
of Analysis on the Generative agent: the medicinal chemist is still 
responsible for generating, by combining experience and software, 
the structural ideas to be screened virtually. With the human acting 
as the Generative agent’s role in Direct Design, there is a substantial 
risk that information generated in the Test phase is under-used. 

The recent developments in Machine Learning propose an al-
ternative to Direct Design to mitigate the information loss between 
Analysis and Design.[7] The underlying principle is to mimic with 
an algorithm the subtle interplay between Generative and Selection 
agents that occurs in the human mind. An algorithm arguably suf-
fers from fewer biases and allows scaling up the whole Design 
stage. This data-driven approach to Design would augment other 
design approaches and free up intellectual resources to explore un-
charted regions of the ‘hypothesis space’ scarcely covered by data. 
The automation of data-driven, model-based Design would indi-
rectly foster hypothesis-driven extrapolative Design to solve com-
plex problems that are still beyond the reach of algorithms.

Early attempts to generate structural recommendations from 
modelled data were frustrated despite the QSPR community’s ef-
forts.[8] The models used in Direct Design contain a functional re-
lationship between molecular structure and property. However, this 
relationship is uni-directional: the model can predict a molecular 
property’s value given a structure but cannot generate molecular 
structures from the property’s value. The key step in this field was 
the recent construction of algorithms that generate molecular struc-
tures based on the target properties,[9,10] thus effectively reversing the 
property-structure relationship into what we call Inverse Design.

Inverse Design is a form of ‘de novo’[11] design entirely based 
on algorithms that take as input steers about the desired property 
and return a set of compounds. The Generative Models embeds (or 
connect to) external predictive models (QSPR or molecular mod-
els) to ensure the generated structures meet the input criteria.[12]

This overarching principle is shared by  many Inverse Design tools 
based on different algorithms, molecular representations, learning 
approach, model embedding, etc.[13]

The search strategy limits the computational molecular  
Design.[14] Intriguingly, some ‘de novo’ approaches based on 
Inverse Design allow, for the first time, an efficient optimization in 
the chemical-property space by establishing a bi-directional rela-
tionship between structure and property. An optimization approach 
(in the virtual space) overcomes some of the virtual screening pit-
falls, since it is compatible with the simultaneous application of 
expensive and accurate models. Indeed, the optimization approach 
requires assessing a smaller number of molecular structures to ex-
plore a given chemical space, as compared to virtual screening.

In one of the earliest approaches to inverse design[15] the algo-
rithm generates a continuous representation of the discrete molecu-
lar space. The resulting Generative model allows perturbing known 
chemical structures or interpolating between molecules by moving 
into this open-ended latent space. The continuous representations 
will enable the use of robust gradient-based optimization to guide 
the search for optimized functional compounds efficiently. 

We observe many academic groups,[16] start-ups,[17] and large 
companies[13] investing in the development of Generative Models 
to support Inverse Design. The progress is immense, and we 
read about successful applications in material and drug design. 
Interestingly alongside the scientific outcome of the computational 
research, computer scientists publish the software code used to 
generate the results. This new, open approach increases reproduc-
ibility and allows other scientists to modify and customize the 

code. Building on top of each other’s work is boosting research 
in the field.

From far above, both Direct Design (based on virtual screening) 
and Inverse Design (based on Generative Models) look deceptively 
similar. In both cases, the Design ‘box’ receives as input a set of 
models from the Analysis and target values for selected proper-
ties. In both cases the Design ‘box’ returns, as output, a series of 
molecular structures that stand a higher chance of passing through 
the biological screening cascade and, ultimately, turn into a viable 
product. However, there are substantial differences in what happens 
inside the ‘box’. Inverse Design fuels the idea generation directly 
from the data and increases the value of the Tests. In other terms, 
Inverse Design, supported by Generative Models, is better linked 
to Analysis than standard approaches. Data and models impact di-
rectly and strongly the ‘Generative Agent’, not just the ‘Selection 
agent’. As a result, molecular structures are generated that match 
better the desired property profile and do not require multi-stage 
virtual screening protocols. The opportunity of optimization in the 
molecular space allows an unprecedented exploration of the prop-
erty space that is both more efficient and faster. This constitutes a 
form of Artificial Intuition that improves with data and scales at 
will. The revolution lies here.

Inverse Design natively embeds multidisciplinary steers into 
the generation of structural ideas. The advent of Generative mod-
els[18] enables us to explore uncharted regions of the chemical/
property space. We expect Inverse Design to increasingly improve 
the effectiveness of DMTA cycles and change the way scientists 
approach the Design of new chemical entities. 
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